Self-learning Based Motion Recognition Using Sensors Embedded in a Smartphone for Mobile Healthcare
نویسندگان
چکیده
Human motion recognition using wearable sensors is becoming a popular topic in the field of mobile health recently. However, most previous studies haven’t solved the problem of unlabeled motion recognition very well due to the limitation of learning ability of their systems. In this paper, we propose a self-learning based motion recognition scheme for mobile healthcare, in which a patient only needs to carry an ordinary smartphone that integrates some common inertial sensors, and both labeled and unlabeled motion types can be recognized by using a self-learning data analysis scheme. Experimental results demonstrate that the proposed self-learning scheme behaves better than some existing ones, and its average accuracy reaches above 80% for motion recognition.
منابع مشابه
Leveraging Smartphone Sensor Data for Human Activity Recognition
Using smartphones for human activity recognition (HAR) has a wide range of applications including healthcare, daily fitness recording, and anomalous situations alerting. This study focuses on human activity recognition based on smartphone embedded sensors. The proposed human activity recognition system recognizes activities including walking, running, sitting, going upstairs, and going downstai...
متن کاملOverview of Performance and Accuracy of Smartphone Sensors in Augmented Reality Applications
Since incorrect excavations have resulted in extensive and irreparable financial and physical losses, therefore different drillings require having accurate information about the status of the infrastructures. Ubiquitous Geospatial Information System (UBGIS) as a new generation of Geospatial Information System (GIS) can be a good solution to avoid such problems. Augmented Reality (AR) is the ne...
متن کاملHuman Activity Recognition by Smartphone using Machine Learning Algorithm for Remote Monitoring
Human Activity Recognition has a lot of applications such as patient monitoring, rehabilitation and assisting disabled. When mobile sensors are hold to the subject’s body, they permit continuous monitoring of numerous signals patterns from the phone. This has appealing use in healthcare applications. In order to improve the state of global healthcare, numeroushealthcare devices have been introd...
متن کاملActivity Recognition Using Fusion of Low-Cost Sensors on a Smartphone for Mobile Navigation Application
Low-cost inertial and motion sensors embedded on smartphones have provided a new platform for dynamic activity pattern inference. In this research, a comparison has been conducted on different sensor data, feature spaces and feature selection methods to increase the efficiency and reduce the computation cost of activity recognition on the smartphones. We evaluated a variety of feature spaces an...
متن کاملGPS-Based Daily Context Recognition for Lifelog Generation Using Smartphone
Mobile devices are becoming increasingly more sophisticated with their many diverse and powerful sensors, such as GPS, acceleration, and gyroscope sensors. They provide numerous services for supporting daily human life and are now being studied as a tool to reduce the worldwide increase of lifestyle-related diseases. This paper describes a method for recognizing the contexts of daily human life...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016